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Abstract. The “geometric” interpretation of the electronic density displacements in the Hilbert space is
given and the associated projection-operator partitioning of the hardness and softness operators (kernels)
is developed. The eigenvectors |AB= {|af} of the hardness operator define the complete (identity) projec-
tor P=4, |aita |=1 for general density displacements, including the charge-transfer (CT) component,
while the eigenvectors |ifi= {|if} of the linear response operator determine the polarizational P-projector,
P, =&, |ifd |. Their difference thus defines the complementary CT-projector: Ry =1- P.. The complete
vector space for density displacements can be also spanned by supplementing the P-modes with the homoge-
neous CT-mode. These subspaces separate the integral (normalization) and local aspects of density shifts

in molecular systems.
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1. Introduction

The emergence of the modern density functional theory
(DFT)*® has provided a convenient framework and
generated a new impetus for formulating new, ther-
modynamic-like approaches to classical problemsin the
theory of chemical reactivity.>*™° For example, the
origin of the chemical bonding, the identity of bonded
atoms, factors determining the nature and relative
importance of alternative reaction sites and pathways
in large reactive and catalytic systems, the stability of
molecular charge distributions, similarity of molecules,
the electron localization, etc., have all been approached
afresh from the density perspective.

This conceptual DFT development has had a uni-
fying influence on the reactivity theory. It combines
the so-called electron following (EF) and electron
preceding (EP) descriptions of both the closed and
open molecular or reactive systems. In the former the
nuclear displacements or the extra presence of other
external potential sourcesinthe molecular environment,
e.g., due to the reaction partner, induce the redistri-
butions of electrons, in the spirit of the Born—
Oppenheimer (BO) approximation. This approach
thus defines the electron response (chemical soft-
ness) representation, in which the external potential
descriptors constitute the independent local state-
parameters. The EF perspective attributes the primary
role to the probing shifts in nuclear positions, i.e.,
changes in molecular geometry. They represent the
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independent perturbations, which induce the subse-
guent responses in the electronic structure.

However, for the complete theoretical framework,
capable of tackling all issuesin the theory of chemi-
cal reactivity, one also requires the complementary
nuclear response (chemical hardness) representa-
tion, in which the roles of the nuclear and electronic
local state-variables are reversed. In such a descrip-
tion one is interested in Taylor expansions in terms
of the density displacements (perturbations), which
are regarded as preceding the subsequent movement of
the nuclei. Therefore, the electron density, the principal
DFT state-variable, constitutes the independent state-
parameter, to which the nuclear (geometrical) factors
respond. This approach isin the spirit of the familiar
Hellmann—Feynman theorem, which states that the
guantum mechanical electron density uniquely deter-
mines the forces acting on the system nuclei. Such
an attitude is also close to the chemical thinking
about how to manipulate molecules, in order to in-
duce desirable changes in the reactive system. Indeed,
chemists often successfully modify the pattern of
chemical bonds in molecules by judiciously designing
a crucial electronic perturbation of the system, which
ultimately induces the desirable conjugated movement
of the nuclei.

It is customary to view the molecular density dis-
placements as the resultant effect of the intermediate
polarization (P) component in the mutually closed
subsystems, for their fixed average numbers of elec-
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trons, and the subsequent charge-transfer (CT) com-
ponent in the mutually open subsystems.*® There-
fore, for a better understanding of these intermediate
stages in chemical reactivity it is vital to extract the
corresponding P and CT contributions to global and
local reactivity indices, e.g., the Fukui Function or
the hardness and softness kernels,>™® which determine
the transformations between the perturbations and re-
sponses in the EF and EP perspectives, respectively.
In this paper we adopt the geometric strategy™’ to
approach this general problem, which uses the pro-
jection operators acting in the Hilbert space spanned
by the independent density displacement modes in
the molecule.*>*+*?

2. Hilbert space of independent density
displacement modes

The shift Dr (r) © &|Dr fiin the equilibrium distribution
of dectrons in a molecule has a transparent “ geometri-
cal” interpretation in the Hilbert space spanned by the
independent density displacement modes (DDM),*
in which it is represented by the vector |Dr fi This
vector space, complete for expanding a general |Dr ii
consists of the polarizational (P) and charge-transfer
(CT) subspaces, defined by the complementary pro-
jection operators P> and P-; respectively,

P=R,+h =1 (1)

The P-subspace is spanned by the orthonormal P-
modes |ifi={|if}, §lifi=d;;, or their position repre-
sentations b(r) = &|ifi= {by(r) = &|if}, which conserve
the overall number of electrons N in the system as a
whole:

d(r)dr=0, i=1,2,... 2
These polarization functions are the eigenvectors of
the density linear response (LR) kernel,*>*2

o (19
b(r, = = 0
9 =S 5

& |b|r@, (3)

where v denotes the external potential due to the nuclei,
N=a (r)dr_is the system overall number of elec-
trons, and b stands for the underlying operator in the
Hilbert space:™*

QP (r.r9h(rgdré=bib(r)
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or

blifi=b, |ifiand & |b=b4|,

a|jf= prb(rydr=di;,i,j=1,2.... (4
In terms of the eigensolutions |ifi and 0= {b;} the
density LR operator is given by its spectral
representation

b =4&;ifbid| or
b(r,r9=4&lblrdi= & b(r)bb (r9. (5)

The associated projection operator
Fal o f o~
P-=a lifd| or

&|P r€i° or, rg = § & |ifd|r®i=§ bk (19,
(6)

separates the P-component, |Dr i, of a general den-
sity displacement vector |Dr i

P |Drfio |Drfl, =§ |if|Driic § |i fDr,
Dri= (@ (r)Dr (r)dr, or
Dro(r)=& |Dr i =c‘g(r,r<9Dr(r<Ddr¢
=a h(ror,. (7)

Next, let us express a general displacement of the
system density, r (r) © Np(r), in terms of the associ-
ated changes in its normalization, DN, and the
shape” (probability) factor, Dp(r):

|Dr fi= N|Dpfi+ [pfDN © |Dr fj + |Dr ity or

Dr (r) = NDp(r) + p(r) DN © Dr n(r) + Dr cr(r),
(8a)

where op(r)dr =1, N=a& (r)dr °© N[r], and hence:
ODp(r)dr =0, oDr (r)dr = DN. It follows from the
preceding equation that the closed system polariza-
tion part Dr n(r), which integrates to zero, is purely
polarizational: P Dr i, = |Dr fiy (see figure 1). The
DN normalized CT-component Dr cr(r), however,
must contain the non-vanishing P- and CT-displace-
ments, since the added (or removed) DN elec-
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ICTfi
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Figure 1. The density displacement vectors |Dr fj, and [Dr fi of the closed and open mo-
lecular systems, respectively, and their partitions into the P- and CT-components in the Hil-
bert space spanned by the two polarizational modes {|ifi |jf} and the homogeneous CT-

mode |CTi

trons are distributed in accordance with the initial
probability factor. Indeed, this density change can
be viewed as a combination of the homogeneous
density displacement Dr ™", such that Dr o™V =
DNt 0, where V denotes the (finite) molecular vol-
ume, which does not bias any local volume element
in the molecule, and the remaining, polarizational
part Dr c7™"(r), which integrates to zero:

Dr cr(r) =Dr &7(r) + Dr &om(r). (8b)
These two components, shown in figure 1, are repre-

sented by the corresponding vectors in the molecular
Hilbert space:

P, [Dr fier = DNy [pA° DN | =] DF 1 fiomoms

Per IDr fer = DN Py [pR© DN per =] Dr ¢ o -
(8c)
The sum of the closed-system polarization and the

inhomogeneous CT-component then defines the
overall polarization in the open molecular system:

IDx % = P Dr fi= [Dr fiy + | DF o1 Firpom OF

Dr o(r) = & | P> [Dr fi= Dr y(r) + Dr &em(r).  (8d)

In the density displacement Hilbert space the che-
mical softness and hardness operators, § and h, re-
spectively, can be similarly defined in terms of their
common (orthonormal) eigenvectors |AB= {|af},
& |bfi=d,, or their position representations c(r) =
alM={cy(r) = &laf}, and the corresponding eigen-
values, 0={h,} and 0= {s, = 1/h,}:

Alafi=hyjail S|afi=s,laffa=1,2, ...,

C)
or in the electron position representation
o |h|r®adardre® do(r,rgc, (rdré=h,c, (r),

IS Iréadandr® ¢ (r,r9c (r9dré=s,c(r),

albi= cya ki |bfdr © ¢§; (r)c, (r)dr =d, ,.(10)
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Here, the eigenvalues Cand O represent the system
principal hardnesses and softnesses, respectively.®*

The resulting spectral resolutions of these two op-
erators then read:

h =a,larh,&|, or

h(r.r9=&|flrdi= § G ()h.,c(9; (11)
S =da,lafsd|, or
s(r,r9=als rdi= § c(nsac(r9. (12)

These independent, collective density displacement
modes, called the density normal modes (DNM)**
span the complete vector space, capable of describ-
ing general displacements of the electron density,
including both the CT- and P-components:

P|Drfi° &,laféa|Dr fi® &,JafDr, = |Dr fi
Po &,.|aféa|=1, &|P|rdi=d(r¢- r),
& | P|r € dDr fidr ¢= ad(r¢- r)Dr (rgdre= Dr (r)

=8aCa(r)Dra, Dra= Cya(r)Dr (r)dr . (13)

Therefore the CT-projector is given by the differ-
ence

P, =P-P =&, aftal- &;|ifd|=1- P».

(14)

It projects out the homogeneous CT component [see
(8c)] of ageneral density displacement

Per | Dr fi® [ DX o1 fiom =|Dr fi- | Dr f = [perfDN o

Dr &9™(r) = & | DX i =Dr (r)- Dr p(r)

= pcr DN, (15)
where pcr = 1/V = &|pcrft

In the previous analysis™ the complete vector
space capable of representing any displacement of
the molecular electron density was constructed by
supplementing the closed system P-modes of (4)
with the homogeneous CT-mode, capable of repre-
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senting changes in the density normalization. For
this additional mode a(r) = &|CTf to be orthogonal
to al polarizational functions b(r) [see (2)] it has to
be constant throughout space: a(r) °© V “? = const.
Alternatively, to avoid problems with an infinite
molecular volume, one can select V locadly, as the
volume V © V(r) = (4/3)prr)® of the Wigner—Seitz
sphere of the homogeneous electron gas, with the
density dependent radius ry(r) =r (r), so that Vi(r) by
definition contains a single electron, Vy(r)r (r) = 1.
In this way one can interpret the constant (renormal-
ized) CT-mode |CThas

a(r)=& |CTA° V{(nr(r)=1. (16)
These vectors explicitly define the corresponding
CT-projectors:

P, =|CTRCT|, &|P. |rdi=1;

P, =|CTRCT|, & | Py ri= V2. (17)
The P-modes then reflect the local aspect of shiftsin
the electron density, while the CT-mode corresponds
to the homogeneous (normalization) facet of the
electron distribution in the molecule. Since the two
homogeneous CT-projectors are renormalized ver-
sions of each other, in what follows we shall explic-
itly use the P°T operator, which makes reference to
the molecular volume. Since P = P°T +P, =1 the
overall projection onto the whole (CT, P)-vector
space gives:

&|Préi=d(re- r) =V +qr, rg. (18)

Let us again examine the result of the CT-pro-
jection of |Dr fi

& | P, |Dr fi= DN&| P, |pfi= DN& | perfi

© DN per (r) = 0& | Py |r€6rdDr idr ¢

=V 'oDr (r§dr¢=DN/V °Dr &,  (19)
Thus the additional CT-mode indeed describes the
homogeneous CT-displacement of the system elec-
tronic density (see figure 1), which does not bias any
location in space.

The P-projection of the density displacement vec-
tor similarly gives [see (7) and (8d)]:
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&| P |Dr fi= N&| P |Dpfi+ DN& | P |pi

© N& |Dpfi+ DN&| ppfi © NDp(r) + DN pp (r)

= 04| P, r€&rqDr fi= dd(re- r) — Vi Dr (rgdre
°Drp(r) =Dr(r) - DN/V

= NDp(r) + DN[p(r) = V] © Dr y(r) +Dr &°m(r) .
(20)

Rewriting Dr p(r) in terms of the P-modes b(r) also
gives (seefigure 1):

&| P [Dr fi= &;loy(r)[Oby* (rQDr (rgdrd © &loy(r)Dr |

= &ibi(r){N[d* (rQDp(r9drq + DN[d* (rOp(r9 drq}
o é,b,(r)(NDp. + DNp|) (21)

Therefore, the homogeneous CT-component,
Dr 2om(r)° & |Dr orfhom Of the open system dis-
placement in the electron density indeed corre-
sponds to the uniform distribution of DN electronsin
the whole (finite) molecular volume, while its overall
P-component Dr(r)° & |Drf now contains the
closed-system polarization density, Dr (r) © NDp(r)
° & | Dr pfiy, and the inhomogeneous part of the CT-
component, Dr BoM(r) © & | Dr ot fmom (S€€ figure 1).
As also shown in the figure the two CT-related vec-
tors define the overall density displacement vector

|Dr fer = | DF o1 fhom | DY 1 finhom = DN|pi (22)

The above inhomogeneous CT-component should
not be confused with the CT-induced polarization,
which represents the second-order effect involving
the product of DN and |Dpfi

As indicated in (8c) the above partitioning of the
density CT-displacement into its homogeneous and
inhomegeneous components results from the divi-
sion of the probability (shape-factor) vector:

Ipi= (P> + Py A [pefi+ [pesfi (23)
It then follows from (19) and (20) that
& | perfi= per(r) =V*' and
& | ppfi= pp(r) = p(r) =V %, (24)

The resultant polarization vector of the open mo-
lecular system [(8d), (20), (21)] thus includes the
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inhomogeneous DN-dependent term, representing
the pseudo-polarization relative to the homogeneous
background of the CT-mode, which results from dis-
tributing DN electrons among local volume elements
in proportion to the local shape factor p(r). This ex-
tra displacement is explicitly shown in figure 1. It
follows from (21) that the closed system term
&|Dr iy = N&; bi(r)Dp; = NDp(r), while the inhomo-
heneous part of of the CT-displacement of the elec-
tron density & |Dr crfinnom = DN pp (r) = DNA; bi(r)p;.

3. Density-potential relations

Let us summarize the relations linking the shifts
[Dr i in the system electron density Dr (r) and the
corresponding vectors representing changes in the
external potential, a|Dvii= Dv(r), and the relative po-
tential, &|Dufi= Du(r) = Dv(r) —Dn{r), where Dn{r) =
& |Dni stands for the displacement in the system lo-
cal chemical potential of electrons. The latter is
equalized for the ground-state (equilibrium) density
at the global chemical potential level niN, v],>*™®

dF[r]

0= Gy =0 G =N =E 2

&N 4

or

u(r) © v(r) - m=-

(25a)

where, the universal (v-independent) functional
F[r]=Ter] + Velr] of the density functional for
the system electronic energy,

Efr]= @ (Iw(r)dr +F[r], (26)

generates the sum of the electronic kinetic (T.) and
repulsion (V) energies. The chemical potential
(electronegativity) equalization of (25a) is implied
by the Hohenberg—Kohn [1] Euler eguation derived
from the N-constrained minimum principle for the
system electronic energy:
{EJfr]- niN,Vv] N[r]} =0. (25b)
Equation (25a) implies the following expression for
the linear response in the relative external potential:

_pEFIr1o

Du(r) © Dv(r) - Dm= Wg
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d2F[r]
= P g rear @

° -0oDr (roh(r¢ r)drg (27)
where the chemical hardness kernel,
. «_ du(r) , &ulri
h(r¢r)=&¢h|rii= ar (1§ Z0dr v (28)
represents the chemical hardness operator h =

- &u|/|dr i. Equation (27) can be written in the
equivalent vector form:

|Dufi= |Dvii- |Dnfi=- h |Dr fi (29)
The inverse relation,
|Dr fi= - S |Dufi (30)

is obtained by acting on both sides of (29) with the
chemical softness operator § = h! = - &r |/|duf,
which gives rise to the softness kernel

S(r¢r) =h(rgr) = &'|8 |rfi=- SL((rrc)y °- ?&éﬁ%
(31)

These inverse kernels satisfy the functional recipro-
city relation:

N d d
G(l’,r@ h(r@r‘9 dr¢ = O% drU((II:% dre.

(32)

In the externally closed molecular system, for
which the density displacement Dr \(r) =&|Dr fj =
NDp(r) [see (3)],

nar |

veDX | = NéDp| = 8Dv|b = v At

(33)

In the position representation this operator equation
in the DDM Hilbert space assumes the familiar form:

ar |ri

¢|d~dr¢

Dr (r) =n&r |rfi= NDp(r) = 0dDv|rdi-~
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= oDv(r@b(rg r)drd (34)
The corresponding inverse relations are:
_ _av|
1 —
&Dv| = @r |b = NéDp| iar i, (35
or in the position representation:
sDv[rfi= Dv(r) = No&Dpr @01 e
addr Ay
= N oDp(r§b™(r¢ r)dre (36)
The so-called internal hardness operator,™*
b o e -1z av|
int o _ 1—_ 3. -1 -

defines the internal hardness kernel of the closed
molecular system:

int _ ajv|r¢‘1 1
h™(r,rg = - A ldrf, - - b Y(r,rg
= @90 o 4151 (38)

TET (g

The negative density LR kernel of (3) similarly de-
fines the internal softness kernel of the closed mo-
lecular system, the position representation of the
corresponding operator

ginto . ph=-4,lifbd| =- N|dvﬁ , (39)
inty, oy — _ nar |ré |r¢‘1 -
L= gt - P9
A (fq)g o . &|a|d (40)
EM) 4

The operator eguations linking the density and the
external potential vectors of the open molecular sys-
tem are given in (29) and (30). The linear responses
in the system relative potential due to a given per-
turbation in the electron distribution are defined by
the hardness operator/kernel:

8Du| = 8Dv| - @nj=- &r|A

=- N&Dp|h - DN |, (41)
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&u|rii=Du(r) = Dv(r) —Dm
= [Du(r)]m+ [Du(r)]v
=- GDr r¢&¢h |ridre=- oDr (rdh(r¢ r)dre
=- O[NDp(r¢ + DNp(r9]h(r¢ r)dr¢

=- of [Dr (r§]n + [Dr (rQ]th(rg r)dre
(42)

The corresponding inverse relations linking pertur-
bations in the relative potential with the equilibrium
linear responses of the system electron density are
determined by the system softness operator/kernel:

&Dr | = NéDp| - DNgp| = -
~ &Dv|§ + 80,

&u|s
(43)
&r |rii=Dr (r) = NDp(r) + DNp(r)
=[Dr (N]n+ [Dr (], = -
=- oDu(rgs(r¢r)dre

GDur¢é ¢S |ridre

=qdDm- Dv(r@]s(r¢ r)dr¢
=- q[Du(r@]m+ [Du(rgl}s(rgr)dre  (44)

It follows from (42) that the hardness kernel of
(28) can be alternatively expressed by the following
partial derivatives involving the external and che-
mical potentials:

_ &) o __evr)o .2 Im 6
D= S (9, ST (95, TS (05
_ _du(r)  _ ae‘nu(r)o
Ndp(r9 " &I (g 2,
ev(r) 6 , eem 6 __ _du(r)
= S (9g, " ST (95, prodN (4

Let us first examine the internal derivatives, for
the fixed N, in the first row of the preceding equa-
tion. The first diagonal derivative represents the in-
ternal hardness kernel of (38), given by the negative
inverse of the density LR kernel. It represents the
external potential response due to the local change
in the density resulting from the displacements in
the density shape factor, for its fixed normalization.
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Therefore, the other derivative, with respect to the
closed system electronic density, corresponding to
the shift in the system chemical potential due to
such an internal density displacement, is given by
the difference

a?"rﬂz?g%“ =h(r¢r)- h"™(rgr) or
&M O~ Nhrgr) - h™(rg ). (45b)

&9 5,

The first partial derivative of the second row in
(45a), measuring the external potential response per
unit change in the overall number of electrons, for
the fixed density probability factor, results from the
chain-rule for implicit functionals:

&ev(r) 6 _

&9y,

_~aefr(r® o aeMv(r) 6
= OXp(rTN 4, ST 8 5,0 ®

e Mr) ¢
EpIr9TN 5

= P9 3 (rGb (rgryaree 20

p(rg
(45c)
where the electronic Fukui Function (FF)°
f(r)_@r(r)o_%ﬂmo (46)

&N g Mg’
and b™(r) stands for the internal local hardness,
which is not equalized. Thus, from (45a),

&Im o _ae m o

bi(r)
& (Mg, gp(rww

p(r9 -

=h(ré¢r) -
(45d)

A similar division can be carried out for the soft-
ness kernel. It can be expressed using the functional
chain-rule transformation in terms the closed system
density response, and the extra term present in the
open molecular systems, which involves the electro-
nic FF and the system global softness.” For this purpose
we express the ground state density as functional of
Nandv,r =r[N, Vv]:

dr(rg _
du(r) —

Al (r90
T EV) 5 @,

s(r,r§ =h(rér)?t = -
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__dr(r90 eeIN 0adr (r9o
SV & Ve N 4

=-b(r,r§ +s(nNf(rd =- b(r,ry +f(r)S(rg.
(47)

Here the local softness

_a@r (e _ adr (o aNg
= Em g™ EN 5 E0mg,
= f(r)s= - EIN_9

&) &, (48)

= (3 (r,r9ar,

and the global softness

5= @NO _

0 _ ~dr (r9 gelu(r) o
%é{, = drdr¢

u(r) & dm g

<<l (r)er
im g,

= Cp(r)dr . (49)

It also follows from (44) that

=qp (rr9drdre =

A (N6 __ adr (N6
Mr9g, &9y,
_ . arne - adr (0o

eMurgy — &Mnre g’

s(rg¢r) = -

(50)

where the non-equilibrium (non-equalized) local
displacement of the system chemical potential
[dm(r)]y = O[dr (r§], h(r¢ r)dr¢ Using (8a) and (48)
then gives:

S(rér) = - N%; p(r)S(r9

_ nETR(r) 6

Wa’ - p(r)s(r9.

(51)

Finally, combining (35) and (41) gives an explicit
expression for the chemical potential displacement:

& =av|- Du|=ar|(P bt +R)

= pDr (bt + R) +cridDr|A or (52)
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Dn(r) = Dm= oDr \(rQ[b *(r¢ r) + h(r¢ r)]dr¢
+ 0Dr cr(rQh(r¢ r)dre

= oDr (r§[og(r¢r2)b *(r2, r)dr2 + h(r¢ r)]dr¢
° obr (ro E o (53)

where the position representation o(r, r§ of the P-
projector has been defined in (6) and (18). One also
identifies the first term in (44) [see also (25) and
(26)] as

Ov|=8&r|Pbl=pdr|ot or
Dv(r) = o[®r (rdg(r¢ r2)drdb 1(r2, r)dr2

eedv(r) ¢

° oDr P(rZ)WEN

drz. (54)

In (45a) we have effectively partitioned the hard-
ness kernel into the additive components represent-
ing the linear responses in the system chemical and
external potentials:

du(r) _  &ujrd
dar(r¢  &Qdrn
_ a@mr)o_ ev(r) 0
&dr (9~ &dr (19 4
_ @mjrii  av]ri
~&qdrA agdri’

h(r¢r) = -

(55)

Equation (50) identifies the corresponding inverse
functional derivatives

dr (r)
du(r9

_ _&r[rd

s(rén =- ZGdun

_agr (r)o _ oedr |rfig
&dm(rgy — &&Gdmiig,

aer (o _  agdr |rio

=TS9, Safdvig 6

In the next section we shall use the (P, CT)-pro-
jections to extract from the hardness and softness
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operators/kernels the specific components reflecting
the pure P or CT effects, and those reflecting the
coupling between these two degrees-of-freedom of
electronic densities in molecular systems.

4. Geometric decomposition of the Fukui function

Equation (47) can be also interpreted as the position
representation of the underlying operator equation in
the molecular Hilbert space for density displace-
ments:

§=- b+ |fraf|°- b +SP, (57)
where | f i represents the electronic FF, (46), in the
density-displacement vector space: f(r) =&|ff
which defines the associated FF projector P; = | f fi
af |. The complementary (P, CT)-projections of the
density displacements in the open molecular systems
then give rise to the corresponding geometric inter-
pretation of the FF vector:

SN0 _ &P | pon
EIN g &N g
[t +| fier =1 fAy +(| perfi-| pef)
© |fﬁ\l +[ | fCT I’:}10m+| fCT I':]nhom]
=(|fig+ | ppf +| per i

=( | fﬁN +| fCTﬁnhom) +| fCTﬁqom

| fAi=

° | +] forflom (58)
where the internal, closed system component,
~ _a|rivo _ aNT| pho
fiy= = I, 59

is due to a change in the shape factor of the electron
distribution, and the external CT-component,
|ffer = (60)

contains both the inhomogeneous (polarizational)
component,

N P |rfi, )0
| f(:Tnnhom = M+

¢ IN (61)

=| pph,
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and the homogeneous part,
o (P |1 fiy ) O N
| forfon = it L) o f= 1y, (62)
¢ TN 2

which reflects the shift in the density normalization
due to the a unit change in the system overall num-
ber of electrons.

Therefore, as in the case of the density displace-
ment, the identity projection of the FF vector,

| f A= (Por +Bo)[ £ AC [| A + | ferfionon] + | ferfhom

= |f ﬁ’ + |fCTﬁwoma (63)
separates the overall intra-system, P-component of
an open molecule, | f i =|f il + |ppfl from the ho-
mogeneous external component, |pcrii= 1/V, (15).
They give rise to the associated contributions to the
FF in the position representation:

f(r) = & |ffi= & |Ffb + & | for fhom = fo(r) + LIV,
(64)

fo(r) =& [k =[f(r)]n + pp(r)

- n&p(r) 0

Wa’+(‘g(r,r(yp(rﬂ}dr¢. (65)

5. Geometric decomposition of density—
potential kernels

The density partitioning of (8) and the related geo-
metric (P, CT)-projections provide additional tools
for interpreting energy changes due to shifts in the
electron density. Consider, as an illustrative exam-
ple, the second differential of the universal density
functional F[r]° F[Np] equal to that of EJr] =
E[N, V] [see (254d), (26) and (42)]:

D2E,[r] = D?F[r]
= Z &P (Oh(r,r9Dr (rgdrar
= ZPur9Dr (rgare
(66)

It should be also emphasized that this energy change
also represents the sum of the first two differentials
of the grand-potential
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_ E[N,V] 6, _

=E[N,V]- O N=E[N,v]- Nm
Wu] = E[N,Vv] SN [N,V]

=QMr)r (r)dr +F[r ] =W[r [u]], (67)

which provides the “thermodynamic” potential for
the open molecular systems in contact with the ex-
ternal electron reservoir (25b). Indeed, by the Euler
equation (25a) the first differential of W,[r] van-
ishes at the equilibrium distribution of electrons and
hence

D*AW[r ] = DPW[r ] = D?F[r]. (68)

One should also observe, that the Euler equation
(25a) implies the reciprocal functional dependences
between the ground-state density and the relative
potential: r =r[u] and u = u[r]. This further implies
that F[r]=F[r[u]] © F[u]. Using (30) and (66) gives

D? F[u] = %c‘ﬁ).l(r)s (r,r4Du(r 9drdr¢ (69)

Using (8a) alows one to separate the closed-system
and external CT-effects in this second-order energy:

DPF[r] = DF [Np]
= %[h_(DN)Z +2N DN g (r) Dp(r) d
+N2qgPe(r)h(r,r§Dp(rgdrdrg, (70)

where:
T°F [Np] _ (o e T°F[r] 0
[ [\ ]p_ @8 TN E;p gﬂf (N (r9 5

AE) O grarg

S‘HN%

= (‘I‘jo(r)h (r,r9 p(r9drdre¢e i, (71)
()6 o oy _. A0U(r) A (196
W% ﬁ(r) r(r(ym%drﬂ;
= P(rgh(rér)are. (72)

This resolution separates the first contribution, due
to DN for constant p, which involves the average
hardness h', from the last term, due to Dp for con-
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stant N, and the two coupling terms containing the
average local hardness h(r), which is not equalized
throughout the space.

Alternatively, the geometric (P,CT)-projections
can be used to resolve, for interpretative purposes,
the second-order energy of (66). The identity projec-
tion P= PR + B =1 placed between the density
displacements and the hardness operator of the Hil-
bert space interpretation of D?E,[r ] =D?F[r],

D2F[r ] =- 14DuDr fi= 14Dr [P P|Dr (73)

can be attributed to either the density displacements,
D2F[r]=1(&r |P)A (PDr )

= - 18D (P|Dr ) = - 1(4Du|P) | Dr A, (74)

or to the hardness operator itself,

D?F[r]=1&r |(PA P)|Dr fi. (75)

The former gives rise to the associated partitioning

the density displacements, while the latter amounts

to dividing the hardness operator into the four ma-
trix elements

o

=4 & PAAR =8, a hx.
(P,R)T { P, P}, (76)
and the associated division of the hardness kernel;
h(r,rg =& |A|r&° § § & |y [r®i=4 & hyy (19,
XY X Y
X, YT {P,CT}. (77)

This operator partitioning resolves the differential of
(66) into the (P, CT)-resolved contributions:

D(Z)F[r]:%(‘!‘ji)r | [ (PAP) | rfér & Dr firdir ¢

(o]

N~

& & @Pr (Nhyy (r,r9Dr (rYdrdr ¢ (78)
XY

A similar projection of the softness operator parti-
tionsit into the four matrix components,
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s :éXéYﬁxggzéxéYgxy,
X, V)1 {P, CT}. (79)

In the position representation this operator projec-
tion gives rise to the corresponding division of the
softness kernel:

s(rr9=a|s|rt° Q q &8,y |1

XY

= A sxy(r.r9. (80)
X Y

It also provides the associated partitioning of the
differential of (69):

DPF[u] :%(‘jﬁDu|rr~r'I|(l5§I5)|r¢fiQDur~drdr¢
° %é é QQPU(r)s xy (r,r9Du(rgdrdr¢, (81)
X Y

The (P,CT)-resolved kernels

Screr(rry herp(r,rou

h(r,rg°
(r.r9 ghpm(f,r@ hP,P(r’rgH
and
s(r,rgois(:T,CT(r’r(y Scrp(r,r9u 82)

e )
&S pcr(r,ry  sep(rr9g

jointly denoted as x(r,r') ={xxy(r,r¢9}, x=(h, s),
can be directly expressed in terms of the eigenfunc-
tions b(r) of (4). For the diagonal P-components one
finds:

Xp(r,19=& |PAR [r®=3 A & IfE1%]j8 I

=4, bOx b, (83)

where x ; =00y (r)X(r,r9b;(r9drdr¢ For the two
off-diagonal terms one similarly obtains:

Xerp(r,r9=a|(1- ISP))A(ISP |r &

=& | %P |1 G- Xop(r,19
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=8 &% |16 %p(r,r9

=8 XOB9- %p(rrd, (84

wherex;(r) = ox(r,r9b; (rgdr¢, and
Xpcr (1,19 =& [PR(1- Pp) [
=& | PoR |1 - X, (1,19
=4 & it |R|r - Xop(r,r9

=2, 8% (Y- % p(r,r9, (85)
with x(r¢ =g (r)x(r,r9dr . Finaly, the diagonal
CT-kernel is obtained by subtracting the above three
partial kernels from the total kernel:

Xer et (g =X(r,r- Xerp(r,r9

- Xpor (19 - X p(r,r9 (86)
This illustrative geometric partitioning of the softness
and hardness kernels should facilitate a better assess-
ment of the relative roles played by the charge-
transfer and polarization effects in molecular processes,
and an evaluation of the strength of their mutual
coupling. It also provides a powerful tool for divid-
ing the associated changes in the electronic energy,
which is vital for such a diagnosis and ultimately for
an understanding of the physical and chemical im-
plications these components have in diverse density
rearrangements in molecules.

6. Conclusion

We have developed the projection partitioning tech-
nique for separating the polarization and charge
transfer components of the familiar indices of the
reactivity theory within the conceptual DFT ap-
proach. This approach uses the projection operators
acting in the vector (Hilbert) space spanned by the
independent modes of density displacements. It gives
rise to the geometric resolution of the overall density
reconstructions in chemical processes, which should
bring about a better understanding of the relative
importance of the P and CT effects in the bond-
forming- bond-breaking processes in molecules and
reactive systems. Theillustrative (P, CT)-decomposition
of the Fukui function as well as the hardness and
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softness kerndls has been carried out. A similar divison 4.

can be carried out for aother reactivity criteria. It dlows
one to view the relations between the electronic per-
turbations and nuclear responses of the EP perspec-
tive in terms of the separate P- and CT-effects, and

generates measures of the coupling between these 6.

two components.
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