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Geometric interpretation of density displacements and charge  
sensitivities 
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Abstract. The “geometric” interpretation of the electronic density displacements in the Hilbert space is 
given and the associated projection-operator partitioning of the hardness and softness operators (kernels) 
is developed. The eigenvectors |Æ〉 = {|α〉} of the hardness operator define the complete (identity) projec-
tor P̂ | | 1α α α= ∑ 〉〈 =  for general density displacements, including the charge-transfer (CT) component, 
while the eigenvectors |i〉 = {|i〉} of the linear response operator determine the polarizational P-projector, 
P̂ | |P i i i= ∑ 〉〈 . Their difference thus defines the complementary CT-projector: CTP̂  = 1 − PP̂ . The complete 
vector space for density displacements can be also spanned by supplementing the P-modes with the homoge-
neous CT-mode. These subspaces separate the integral (normalization) and local aspects of density shifts 
in molecular systems. 
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1. Introduction 

The emergence of the modern density functional theory 
(DFT)1–3 has provided a convenient framework and 
generated a new impetus for formulating new, ther-
modynamic-like approaches to classical problems in the 
theory of chemical reactivity.2,4–10 For example, the 
origin of the chemical bonding, the identity of bonded 
atoms, factors determining the nature and relative 
importance of alternative reaction sites and pathways 
in large reactive and catalytic systems, the stability of 
molecular charge distributions, similarity of molecules, 
the electron localization, etc., have all been approached 
afresh from the density perspective. 
 This conceptual DFT development has had a uni-
fying influence on the reactivity theory. It combines 
the so-called electron following (EF) and electron 
preceding (EP) descriptions of both the closed and 
open molecular or reactive systems. In the former the 
nuclear displacements or the extra presence of other 
external potential sources in the molecular environment, 
e.g., due to the reaction partner, induce the redistri-
butions of electrons, in the spirit of the Born–
Oppenheimer (BO) approximation. This approach 
thus defines the electron response (chemical soft-
ness) representation, in which the external potential 
descriptors constitute the independent local state-
parameters. The EF perspective attributes the primary 
role to the probing shifts in nuclear positions, i.e., 
changes in molecular geometry. They represent the 

independent perturbations, which induce the subse-
quent responses in the electronic structure. 
 However, for the complete theoretical framework, 
capable of tackling all issues in the theory of chemi-
cal reactivity, one also requires the complementary 
nuclear response (chemical hardness) representa-
tion, in which the roles of the nuclear and electronic 
local state-variables are reversed. In such a descrip-
tion one is interested in Taylor expansions in terms 
of the density displacements (perturbations), which 
are regarded as preceding the subsequent movement of 
the nuclei. Therefore, the electron density, the principal 
DFT state-variable, constitutes the independent state-
parameter, to which the nuclear (geometrical) factors 
respond. This approach is in the spirit of the familiar 
Hellmann–Feynman theorem, which states that the 
quantum mechanical electron density uniquely deter-
mines the forces acting on the system nuclei. Such 
an attitude is also close to the chemical thinking 
about how to manipulate molecules, in order to in-
duce desirable changes in the reactive system. Indeed, 
chemists often successfully modify the pattern of 
chemical bonds in molecules by judiciously designing 
a crucial electronic perturbation of the system, which 
ultimately induces the desirable conjugated movement 
of the nuclei. 
 It is customary to view the molecular density dis-
placements as the resultant effect of the intermediate 
polarization (P) component in the mutually closed 
subsystems, for their fixed average numbers of elec-



Roman F Nalewajski 

 

456

trons, and the subsequent charge-transfer (CT) com-
ponent in the mutually open subsystems.4–6 There-
fore, for a better understanding of these intermediate 
stages in chemical reactivity it is vital to extract the 
corresponding P and CT contributions to global and 
local reactivity indices, e.g., the Fukui Function or 
the hardness and softness kernels,2–10 which determine 
the transformations between the perturbations and re-
sponses in the EF and EP perspectives, respectively. 
In this paper we adopt the geometric strategy11 to 
approach this general problem, which uses the pro-
jection operators acting in the Hilbert space spanned 
by the independent density displacement modes in 
the molecule.4,5,11,12 

2. Hilbert space of independent density  
displacement modes 

The shift ∆ρ(r) ≡ 〈r|∆ρ〉 in the equilibrium distribution 
of electrons in a molecule has a transparent “geometri-
cal” interpretation in the Hilbert space spanned by the 
independent density displacement modes (DDM),11 
in which it is represented by the vector |∆ρ〉. This 
vector space, complete for expanding a general |∆ρ〉, 
consists of the polarizational (P) and charge-transfer 
(CT) subspaces, defined by the complementary pro-
jection operators PP̂  and CTP̂  respectively,  
 

 P̂  = CTP̂ + PP̂  = 1. (1) 

 
 The P-subspace is spanned by the orthonormal P-
modes |i〉 = {|i〉}, 〈j|i〉 = δi,j, or their position repre-
sentations b(r) = 〈r|i〉 = {bi(r) = 〈r|i〉}, which conserve 
the overall number of electrons N in the system as a 
whole: 
 
 ∫bi(r)dr = 0, i = 1, 2, ... (2) 
 
These polarization functions are the eigenvectors of 
the density linear response (LR) kernel,4,5,11,12 

 
( ) ˆ( , ) | |
( )

N
v

ρ
β

′ ∂′ ′= ≡ 〈 β 〉 ∂ 

r
r r r r

r
, (3) 

where v denotes the external potential due to the nuclei, 
N = ∫ρ(r)dr is the system overall number of elec-
trons, and β̂ stands for the underlying operator in the 
Hilbert space:11 
 

 ( , ) ( ) d ( )i i ib bβ β′ ′ ′ =∫ r r r r r  

or  

  ˆ | |ii iββ 〉 = 〉  and ˆ |ii iβ〈 | β = 〈 ,  

 〈i | j 〉 = jiji bb ,
* d)()( δ rrr =∫ , i, j = 1, 2, … . (4) 

 
In terms of the eigensolutions |i〉 and â  = {βi} the 
density LR operator is given by its spectral 
representation 
 

    β̂  = ∑i |i〉βi〈i| or 

 ( , )β ′ =r r 〈r| β̂ |r′〉 = *( ) ( )i i ii
b bβ ′∑ r r . (5) 

 
The associated projection operator  
 

     P̂ | |P i
i i= 〉〈∑  or 

〈r| PP̂ |r′〉 ≡ γ(r, r′) = *| | ( ) ( ),i ii i
i i b b′ ′〈 〉〈 〉 =∑ ∑r r r r   

 (6) 
 
separates the P-component, |∆ρ〉P, of a general den-
sity displacement vector |∆ρ〉: 
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(7)
 

 
 Next, let us express a general displacement of the 
system density, ρ(r) ≡ Np(r), in terms of the associ-
ated changes in its normalization, ∆N, and the 
shape” (probability) factor, ∆p(r): 
 
  |∆ρ〉 = N|∆p〉 + |p〉∆N ≡ |∆ρ〉N + |∆ρ〉CT  or 
 
 ∆ρ(r) = N∆p(r) + p(r) ∆N ≡ ∆ρN(r) + ∆ρCT(r), 

  (8a) 
 
where ∫ p(r)dr = 1, N = ∫ρ(r)dr ≡ N[ρ], and hence: 
∫ ∆p(r)dr = 0, ∫ ∆ρ(r)dr = ∆N. It follows from the 
preceding equation that the closed system polariza-
tion part ∆ρN(r), which integrates to zero, is purely 
polarizational: PP̂ |∆ρ〉N = |∆ρ〉N (see figure 1). The 
∆N normalized CT-component ∆ρCT(r), however, 
must contain the non-vanishing P- and CT-displace-
ments, since the added (or removed) ∆N elec-
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                                          |CT〉 

                                        
                                       ∆N   

          | ∆ρCT〉hom = ∆N| pCT〉 
     | ∆ρ〉 = | ∆ρ〉P

 + | ∆ρ〉CT 

         
                   

                                                        | ∆ρ〉CT  = | ∆ρCT〉hom+ |∆ρ CT〉inhom 
                                             N∆pj +

 ∆Npj 
          
                               N∆pj        
                   | j 〉  
     
    N ∆pi      | ∆ρ〉N = | ∆ρP〉N = N| ∆p〉 
                                                                             |∆ρ CT〉inhom = ∆N| pP〉 
      N∆pi +

 ∆Npi   
       | ∆ρP〉N

 + | ∆ρCT〉inhom  ≡ | ∆ρ〉P 
                   | i 〉 

 
 

Figure 1. The density displacement vectors |∆ρ〉N and |∆ρ〉, of the closed and open mo-
lecular systems, respectively, and their partitions into the P- and CT-components in the Hil-
bert space spanned by the two polarizational modes {|i〉, | j〉} and the homogeneous CT-
mode |CT〉. 

 
trons are distributed in accordance with the initial 
probability factor. Indeed, this density change can 
be viewed as a combination of the homogeneous 
density displacement ∆ρCT

hom, such that ∆ρCT
homV = 

∆N ≠ 0, where V denotes the (finite) molecular vol-
ume, which does not bias any local volume element 
in the molecule, and the remaining, polarizational 
part ∆ρCT

inhom(r), which integrates to zero: 
 
 ∆ρCT(r) = )(rhom

CTρ∆  + )(rinhom
CTρ∆ . (8b) 

 
These two components, shown in figure 1, are repre-
sented by the corresponding vectors in the molecular 
Hilbert space: 
 

  PP̂ |∆ρ〉CT = ∆N PP̂ |p〉 ≡ ∆N | | ,P CT inhomp ρ〉 = ∆ 〉  
 
 CTP̂ |∆ρ〉CT = ∆N CTP̂ |p〉 ≡ ∆N | |CT CT homp ρ〉 = ∆ 〉 . 

 (8c) 
 
The sum of the closed-system polarization and the 
inhomogeneous CT-component then defines the 
overall polarization in the open molecular system: 

  |∆ρ〉P = PP̂ |∆ρ〉 = |∆ρ〉N + | hominCT 〉∆ρ  or 
 

 ∆ρP(r) = 〈r | PP̂ |∆ρ〉 = ∆ρN(r) + )(rinhom
CTρ∆ . (8d) 

 
 In the density displacement Hilbert space the che-
mical softness and hardness operators, σ̂  and η̂ , re-
spectively, can be similarly defined in terms of their 
common (orthonormal) eigenvectors |Æ〉 = {|α〉}, 
〈α|β〉 = δα,β, or their position representations c(r) = 
〈r|Æ〉 = {cα(r) = 〈r|α〉}, and the corresponding eigen-
values, ç  = {ηα} and ó  = {σα  = 1/ηα}: 
 
 η̂ |α〉 = ηα |α〉, σ̂ |α〉 = σα |α〉, α = 1, 2, …, 

 (9) 
 
or in the electron position representation 
 

 ˆ | d ( , ) ( )d ( ),c cα α αα η η′ ′ ′ ′ ′ ′〈 η | 〉〈 〉 ≡ =∫ ∫r | r r r r r r r r  

 ∫ ∫ =′′′≡′〉′〉〈′|σ〈 )(d)(),(dˆ| rrrrrr|rrr ααα σσα cc , 

 〈α|β〉 = *
,| d ( ) ( ) d .c cα β α βα β δ〈 〉〈 〉 ≡ =∫ ∫r r | r r r r  (10) 
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Here, the eigenvalues ç  and ó  represent the system 
principal hardnesses and softnesses, respectively.3,4  
 The resulting spectral resolutions of these two op-
erators then read: 
 
     η̂  = ∑α|α〉ηα〈α|, or  

 =′),( rrη 〈r| η̂ |r′〉 = ;)()( *∑ ′
α ααα η rr cc  (11) 

 
    σ̂  = ∑α|α〉σα〈α|, or 

 =′),( rrσ 〈r| σ̂ |r′〉 = .)()( *∑ ′
α ααα σ rr cc  (12) 

 
These independent, collective density displacement 
modes, called the density normal modes (DNM)4,5 
span the complete vector space, capable of describ-
ing general displacements of the electron density, 
including both the CT- and P-components: 
 
 P̂ |∆ρ〉 ≡ ∑α|α〉〈α|∆ρ〉 ≡ ∑α|α〉∆ρα = |∆ρ〉, 
 

     P̂  ≡ ∑α|α〉〈α| = 1, 〈r| P̂ |r′〉 = δ(r′ − r), 
 
  ∫ 〈r| P̂ |r′〉〈r′|∆ρ〉dr′ = ∫δ(r′ − r)∆ρ(r′)dr′ = ∆ρ(r) 
 

  = ∑αcα(r)∆ρα, ∆ρα = rrr d)()(*∫ ∆ραc . (13) 

 
 Therefore the CT-projector is given by the differ-
ence 
 

 CTP̂  = P̂ − PP̂  = ∑α |α〉〈α| − ∑i |i〉〈i| = 1 − PP̂ . 
 (14) 
 
It projects out the homogeneous CT component [see 
(8c)] of a general density displacement 
 

 PhomCTCT 〉∆−〉∆=〉∆≡〉∆ ρρρρ ||||P̂  = |pCT〉∆N or 
 

 ( ) ( ) ( )hom
CT CT hom Pρ ρ ρ ρ∆ = 〈 ∆ 〉 = ∆ − ∆r r | r r  

      = pCT ∆N, (15) 
 
where pCT = 1/V = 〈r|pCT〉. 
 In the previous analysis11 the complete vector 
space capable of representing any displacement of 
the molecular electron density was constructed by 
supplementing the closed system P-modes of (4) 
with the homogeneous CT-mode, capable of repre-

senting changes in the density normalization. For 
this additional mode a(r) = 〈r|CT〉 to be orthogonal 
to all polarizational functions b(r) [see (2)] it has to 
be constant throughout space: a(r) ≡ V−1/2 = const. 
Alternatively, to avoid problems with an infinite 
molecular volume, one can select V locally, as the 
volume V ≡ Vs(r) = (4/3)πrs(r)3 of the Wigner–Seitz 
sphere of the homogeneous electron gas, with the 
density dependent radius rs(r) = ρ–1(r), so that Vs(r) by 
definition contains a single electron, Vs(r)ρ(r) = 1. 
In this way one can interpret the constant (renormal-
ized) CT-mode |CT〉 as 
 
 〉〈= CT|rr)(a  ≡ Vs(r)ρ(r) = 1. (16) 

 
These vectors explicitly define the corresponding 
CT-projectors: 
 

 P̂ |= 〉〈CT CT CT | , 〈r | P̂CT |r′〉 = 1; 

 P̂CT CT CT= 〉〈 , 〈r | CTP̂ |r′〉 = V–1. (17) 

 
The P-modes then reflect the local aspect of shifts in 
the electron density, while the CT-mode corresponds 
to the homogeneous (normalization) facet of the 
electron distribution in the molecule. Since the two 
homogeneous CT-projectors are renormalized ver-
sions of each other, in what follows we shall explic-
itly use the CTP̂ operator, which makes reference to 
the molecular volume. Since P̂  = CTP̂ + PP̂  = 1 the 
overall projection onto the whole (CT, P)-vector 
space gives: 
 
 〈r| P̂ |r′〉 = δ(r′ − r) = V–1 + γ(r, r′). (18) 
 
 Let us again examine the result of the CT-pro-
jection of |∆ρ〉: 
 

〈r | P̂CT |∆ρ〉 = ∆N〈r| P̂CT |p〉 = ∆N〈r 〉CTp|  

    
 

≡ ∆N CTp (r) = ∫ 〈r | CTP̂ |r′〉〈r′|∆ρ〉dr′ 

     = V−1∫ ∆ρ(r′)dr′ = ∆N/V hom
CTρ∆≡ , (19) 

 
Thus the additional CT-mode indeed describes the 
homogeneous CT-displacement of the system elec-
tronic density (see figure 1), which does not bias any 
location in space. 
 The P-projection of the density displacement vec-
tor similarly gives [see (7) and (8d)]: 
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 〈r| PP̂ |∆ρ〉 = N〈r| PP̂ |∆p〉 + ∆N〈r| PP̂ |p〉  

 ≡ N〈r|∆p〉 + ∆N〈r| 〉Pp  ≡ N∆p(r) + ∆N Pp (r) 

 = ∫ 〈r| PP̂ |r′〉〈r′|∆ρ〉 = ∫[δ(r′′ − r) – V–1]∆ρ(r′)dr′ 

 )(rPρ∆≡  = ∆ρ(r) − ∆N/V 

 = N∆p(r) + ∆N[p(r) – V–1] )(rNρ∆≡ )(rhomin
CTρ∆+ . 

 (20) 

Rewriting )(rPρ∆  in terms of the P-modes b(r) also 
gives (see figure 1): 

〈r| PP̂ |∆ρ〉 = ∑ibi(r)[∫ bi*(r′)∆ρ(r′)dr′] ≡ ∑ibi(r)∆ρ 
i 

= ∑ibi(r){N[∫bi*(r′)∆p(r′)dr′] + ∆N[∫bi*(r′)p(r′) dr′]} 

≡ ∑ibi(r)(N∆pi + ∆Npi). (21) 

 
 Therefore, the homogeneous CT-component, 

,)( homCT
hom
CT 〉∆〈≡∆ ρρ |rr  of the open system dis-

placement in the electron density indeed corre-
sponds to the uniform distribution of ∆N electrons in 
the whole (finite) molecular volume, while its overall 
P-component PP 〉∆〈≡∆ ρρ |)( rr  now contains the 
closed-system polarization density, )(rNρ∆ )(rpN∆≡  

NP〉∆〈≡ ρ|r , and the inhomogeneous part of the CT-
component, )(rhomin

CTρ∆ hominCT 〉∆〈≡ ρ|r (see figure 1). 
As also shown in the figure the two CT-related vec-
tors define the overall density displacement vector 
 
 inhomCThomCTCT 〉∆+〉∆=〉∆ ρρρ |||  = ∆N|p〉. (22) 

 
 The above inhomogeneous CT-component should 
not be confused with the CT-induced polarization, 
which represents the second-order effect involving 
the product of ∆N and |∆p〉. 
 As indicated in (8c) the above partitioning of the 
density CT-displacement into its homogeneous and 
inhomegeneous components results from the divi-
sion of the probability (shape-factor) vector: 

 |p〉 = ( PP̂ + CTP̂ )|p〉 ≡ |pP〉 + |pCT〉. (23) 

It then follows from (19) and (20) that 

 〈r 〉CTp|  = CTp (r) = V−1 and   

  〈r 〉Pp| = Pp (r) = p(r) – V−1.  (24) 

 The resultant polarization vector of the open mo-
lecular system [(8d), (20), (21)] thus includes the 

inhomogeneous ∆N-dependent term, representing 
the pseudo-polarization relative to the homogeneous 
background of the CT-mode, which results from dis-
tributing ∆N electrons among local volume elements 
in proportion to the local shape factor p(r). This ex-
tra displacement is explicitly shown in figure 1. It 
follows from (21) that the closed system term 
〈r|∆ρ〉N = N∑i bi(r)∆pi = N∆p(r), while the inhomo-
heneous part of of the CT-displacement of the elec-
tron density 〈r|∆ρCT〉inhom = ∆N Pp (r) = ∆N∑i bi(r)pi. 

3. Density-potential relations 

Let us summarize the relations linking the shifts 
|∆ρ〉 in the system electron density ∆ρ(r) and the 
corresponding vectors representing changes in the 
external potential, 〈r|∆v〉 = ∆v(r), and the relative po-
tential, 〈r|∆u〉 = ∆u(r) = ∆v(r) – ∆µ(r), where ∆µ(r) = 
〈r|∆µ〉 stands for the displacement in the system lo-
cal chemical potential of electrons. The latter is 
equalized for the ground-state (equilibrium) density 
at the global chemical potential level µ[N, v],2,4–8 
 

µ(r) = 
v

v

N
vNE

vN
F

rv
E









∂
∂==+= ],[],[

)(
][

)(
)(
][ µ

δρ
ρδ

δρ
ρδ

rr
 

or 

u(r) ≡ v(r) − µ = −
)(
][

rδρ
ρδF

, (25a) 

 
where, the universal (v-independent) functional 
F[ρ] = Te[ρ] + Vee[ρ] of the density functional for 
the system electronic energy, 
 

 Ev[ρ] = ],[d)()( ρρ Fv +∫ rrr  (26) 

 
generates the sum of the electronic kinetic (Te) and 
repulsion (Vee) energies. The chemical potential 
(electronegativity) equalization of (25a) is implied 
by the Hohenberg–Kohn [1] Euler equation derived 
from the N-constrained minimum principle for the 
system electronic energy: 
 
 δ{Ev[ρ] − µ[N, v] N[ρ]} = 0. (25b) 
 
Equation (25a) implies the following expression for 
the linear response in the relative external potential: 
 

 ∆u(r) ≡ ∆v(r) − ∆µ = −∆ 







)(
][

rδρ
ρδF
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  r
rr

r ′
′

′∆−= ∫ d
)()(

][
)(

2

δρδρ
ρδρ F

 

  ≡ −∫ ∆ρ(r′)η(r′, r)dr′, (27) 

 
where the chemical hardness kernel,  
 

 η(r′, r) = 〈r′| η̂ |r〉 = −
)(
)(

r
r
′δρ

δu
,|

〉′〈
〉〈−≡

δρ
δ

|r
ru  (28) 

 
represents the chemical hardness operator η̂  = 

〉〈− δρδ |/|u . Equation (27) can be written in the 
equivalent vector form: 
 
 |∆u〉 = |∆v〉 − |∆µ〉 = − η̂ |∆ρ〉. (29) 

 
The inverse relation, 
 
 |∆ρ〉 = − σ̂ |∆u〉,  (30) 
 
is obtained by acting on both sides of (29) with the 
chemical softness operator σ̂  = 1−η̂  = |/| ,uδρ δ−〈 〉  
which gives rise to the softness kernel 
 

σ(r′, r) = η−1(r′, r) = 〈r’| σ̂ |r〉 = −
)(
)(

r
r
′uδ

δρ
.

|
〉′〈
〉〈−≡

uδ
δρ

|r
r

 

 (31) 
 
These inverse kernels satisfy the functional recipro-
city relation: 
 

 ∫ ′′),( rrσ ),( rr ′′′η r ′′d  = ∫
′′
)(
)(

r
r

uδ
δρ

)(
)(

r
r

′′
′

δρ
δu

r ′′d . 

          =
)(
)(

r
r

u
u

δ
δ ′

= ).( rr −′δ  (32) 

 
 In the externally closed molecular system, for 
which the density displacement )(rNρ∆  =〈r|∆ρ〉N = 
N∆p(r) [see (3)], 
 

 N〈∆ρ| = N〈∆p| = 〈∆v| β̂  = 〈∆v|
〉

〈
v

N

δ
δρ

|
|
. (33) 

 
In the position representation this operator equation 
in the DDM Hilbert space assumes the familiar form: 
 
 )(rNρ∆  = N〈∆ρ|r〉 = N∆p(r) = ∫ 〈∆v|r′〉

〉′〈
〉〈

v
N

δ
δρ

|r
r|

dr′ 

  = ∫ ∆v(r′)β(r′, r)dr′.  (34) 
 
 The corresponding inverse relations are: 
 

 〈∆v| = N〈∆ρ| 1β–ˆ  = N〈∆p| ,
|

|
N

v
〉

〈
δρ
δ  (35) 

 
or in the position representation: 
 

 〈∆v|r〉 = ∆v(r) = N∫ 〈∆p|r′〉
N

v
〉′〈
〉〈

δρ
δ
|r

r| dr′  

   = N ∫ ∆p(r′)β–1(r′, r)dr′. (36) 
 
 The so-called internal hardness operator,11 
 

 intη̂  ≡ − 1β–ˆ  = − ∑i |i〉βi
−1〈i| 

N

v
〉

〈−=
δρ
δ

|
| , (37) 

 
defines the internal hardness kernel of the closed 
molecular system: 
 

 ηint(r, r′) = 
N

v
〉〈
〉′〈−

δρ
δ
|r

r|  = − ),(1 rr ′−β  

    ≡







∂
′∂−=

N

v
)(
)(

r
r

ρ
− 〈r | 1−β̂ |r′〉. (38) 

 
The negative density LR kernel of (3) similarly de-
fines the internal softness kernel of the closed mo-
lecular system, the position representation of the 
corresponding operator 
 

  intσ̂  ≡ − β̂  = −∑i |i〉βi〈i| 〉
〈−=

v
N

δ
δρ

|
|
, (39) 

 

σint(r, r’) =
〉〈

〉′〈−
v

N

δ
δρ

|r
r|

= − ),( rr ′β  

   = 
( )

( )
N

v

ρ ′ ∂
− ≡ ∂ 

r
r

 − 〈r | â̂ |r′〉. (40) 

 
 The operator equations linking the density and the 
external potential vectors of the open molecular sys-
tem are given in (29) and (30). The linear responses 
in the system relative potential due to a given per-
turbation in the electron distribution are defined by 
the hardness operator/kernel:  
 

 〈∆u| = 〈∆v| − 〈∆µ| = − 〈∆ρ| η̂   

   = − N〈∆p| η̂  − ∆N 〈p| η̂ , (41) 
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 〈∆u|r〉 = ∆u(r) = ∆v(r) – ∆µ 

   
 

= [∆u(r)]µ + [∆u(r)]v  

   
 

= − ∫〈∆ρ|r′〉〈r′| η̂ |r〉dr′ = − ∫ ∆ρ(r′)η(r′, r)dr′′ 

   
 

= − ∫ [N∆p(r′′) + ∆Np(r′)]η(r′, r)dr′ 

   
 

= − ∫ {[∆ρ(r′)]N + [∆ρ(r′)]p}η(r′, r)dr′. 
 (42) 

 
The corresponding inverse relations linking pertur-
bations in the relative potential with the equilibrium 
linear responses of the system electron density are 
determined by the system softness operator/kernel: 
 
 〈∆ρ| = N〈∆p| − ∆N〈p| = − 〈∆u| σ̂  

= − 〈∆v| σ̂ + 〈∆µ| ó̂ , (43) 
 
 〈∆ρ|r〉 = ∆ρ(r) = N∆p(r) + ∆Np(r) 

= [∆ρ(r)]N + [∆ρ(r)]p = − ∫〈∆u|r′〉〈r′| σ̂ |r〉dr′ 

= − ∫ ∆u(r′)σ(r′, r)dr′  

= ∫[∆µ − ∆v(r′)]σ(r′, r)dr′ 

= − ∫{[∆u(r′)]µ + [∆u(r′)]v}σ(r′, r)dr′. (44) 

 
 It follows from (42) that the hardness kernel of 
(28) can be alternatively expressed by the following 
partial derivatives involving the external and che-
mical potentials: 
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 Let us first examine the internal derivatives, for 
the fixed N, in the first row of the preceding equa-
tion. The first diagonal derivative represents the in-
ternal hardness kernel of (38), given by the negative 
inverse of the density LR kernel. It represents the 
external potential response due to the local change 
in the density resulting from the displacements in 
the density shape factor, for its fixed normalization. 

Therefore, the other derivative, with respect to the 
closed system electronic density, corresponding to 
the shift in the system chemical potential due to 
such an internal density displacement, is given by 
the difference 
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 = N[η(r′, r) − ηint(r′, r)]. (45b) 

 
 The first partial derivative of the second row in 
(45a), measuring the external potential response per 
unit change in the overall number of electrons, for 
the fixed density probability factor, results from the 
chain-rule for implicit functionals: 
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 (45c) 
where the electronic Fukui Function (FF)9 
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and β–1(r) stands for the internal local hardness, 
which is not equalized. Thus, from (45a), 
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 A similar division can be carried out for the soft-
ness kernel. It can be expressed using the functional 
chain-rule transformation in terms the closed system 
density response, and the extra term present in the 
open molecular systems, which involves the electro-
nic FF and the system global softness.9 For this purpose 
we express the ground state density as functional of 
N and v, ρ = ρ[N, v]: 
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Here the local softness  
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and the global softness  
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 It also follows from (44) that  
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where the non-equilibrium (non-equalized) local 
displacement of the system chemical potential 
[δµ(r)]v = ∫ [δρ(r′)]v η(r′, r)dr′. Using (8a) and (48) 
then gives: 
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 Finally, combining (35) and (41) gives an explicit 
expression for the chemical potential displacement: 
 

 〈∆µ| = 〈∆v| − 〈∆u| = 〈∆ρ|( PP̂ 1−β̂  + η̂ ) 

= P〈∆ρ|( 1−β̂  + η̂ ) + CT〈∆ρ| η̂  or (52) 
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where the position representation γ(r, r′) of the P-
projector has been defined in (6) and (18). One also 
identifies the first term in (44) [see also (25) and 
(26)] as 
 

  〈∆v| = 〈∆ρ| PP̂ 1−β̂  = P〈∆ρ| 1−β̂  or 

 ∆v(r) = ∫ [∫∆ρ(r′)γ(r′, r″)dr′]β−1(r″, r)dr″ 
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 In (45a) we have effectively partitioned the hard-
ness kernel into the additive components represent-
ing the linear responses in the system chemical and 
external potentials: 
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Equation (50) identifies the corresponding inverse 
functional derivatives 
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In the next section we shall use the (P, CT)-pro-
jections to extract from the hardness and softness 
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operators/kernels the specific components reflecting 
the pure P or CT effects, and those reflecting the 
coupling between these two degrees-of-freedom of 
electronic densities in molecular systems. 

4. Geometric decomposition of the Fukui function 

Equation (47) can be also interpreted as the position 
representation of the underlying operator equation in 
the molecular Hilbert space for density displace-
ments: 
 

 σ̂  = − β̂  + | f 〉S〈 f | ≡ − β̂  + S fP̂ , (57) 

 
where | f 〉 represents the electronic FF, (46), in the 
density-displacement vector space: f(r) = 〈r| f 〉, 
which defines the associated FF projector fP̂ = | f 〉 
〈 f |. The complementary (P, CT)-projections of the 
density displacements in the open molecular systems 
then give rise to the corresponding geometric inter-
pretation of the FF vector: 
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where the internal, closed system component,  
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is due to a change in the shape factor of the electron 
distribution, and the external CT-component,  
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contains both the inhomogeneous (polarizational) 
component, 
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and the homogeneous part,  
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which reflects the shift in the density normalization 
due to the a unit change in the system overall num-
ber of electrons. 
 Therefore, as in the case of the density displace-
ment, the identity projection of the FF vector, 
 

 | f 〉 = ( CTP̂ + PP̂ )| f 〉 ≡ [| f 〉N + | fCT〉inhom] + | fCT〉hom 

= | f 〉P + | fCT〉hom,  (63) 
 
separates the overall intra-system, P-component of 
an open molecule, | f 〉P = | f 〉N + | pP〉, from the ho-
mogeneous external component, | pCT〉 = 1/V, (15). 
They give rise to the associated contributions to the 
FF in the position representation: 
 
 f(r) = 〈r | f 〉 = 〈r | f 〉P + 〈r | fCT

 〉hom = fP(r) + 1/V, 

 (64) 
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5. Geometric decomposition of density– 
potential kernels 

The density partitioning of (8) and the related geo-
metric (P, CT)-projections provide additional tools 
for interpreting energy changes due to shifts in the 
electron density. Consider, as an illustrative exam-
ple, the second differential of the universal density 
functional F[ρ] ≡ F ][Np  equal to that of Ev[ρ] = 
E[N, v] [see (25a), (26) and (42)]:  
 
 ][][ )2()2( ρρ FEv ∆=∆  

∫∫ ′∆′∆= 'dd)(),()(
2
1 rrrrrr ρηρ  

∫ ′′∆′∆−= rrr d)()(
2
1 ρu . 

 (66) 

It should be also emphasized that this energy change 
also represents the sum of the first two differentials 
of the grand-potential 
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which provides the “thermodynamic” potential for 
the open molecular systems in contact with the ex-
ternal electron reservoir (25b). Indeed, by the Euler 
equation (25a) the first differential of Ωu[ρ] van-
ishes at the equilibrium distribution of electrons and 
hence 
 
 ∆(1+2)Ωu[ρ] = ∆(2)Ωu[ρ] = ∆(2)F[ρ].  (68) 
 
 One should also observe, that the Euler equation 
(25a) implies the reciprocal functional dependences 
between the ground-state density and the relative 
potential: ρ = ρ[u] and u = u[ρ]. This further implies 
that F[ρ] = F[ρ[u]] ≡ ][
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uF . Using (30) and (66) gives 
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 Using (8a) allows one to separate the closed-system 
and external CT-effects in this second-order energy:  
 
 ∆(2)F[ρ] = ∆(2)F ][Np  

= ∫ ∆∆+∆ rrr d )()(2)([
2
1 2 pNNN ηη  

]dd)(),()(2∫∫ ′′∆′∆+ rrrrrr ppN η , (70) 

where: 

 
∂2F [Np]

∂N2     = ∫∫ 







∂
∂

p
N

)(rρ








′∂∂
∂

)()(
][2

rr ρρ
ρF

 

                 ×
p

N 







∂
∂ )(r’ρ

rr ′dd  

 ,dd)(),()( ηη ≡′′′= ∫∫ rrrrrr pp  (71) 

 

 ∫ ′







∂
′∂

′−=≡







∂
∂− rr

r
rrr

d
)(

)(
)(

)(
)(

pp
N

u
N

u ρ
δρ
δη  

∫ ′′′= rrrr d),()( ηp . (72) 

 
This resolution separates the first contribution, due 
to ∆N for constant p, which involves the average 
hardness η , from the last term, due to ∆p for con-

stant N, and the two coupling terms containing the 
average local hardness ),(rη  which is not equalized 
throughout the space. 
 Alternatively, the geometric (P,CT)-projections 
can be used to resolve, for interpretative purposes, 
the second-order energy of (66). The identity projec-
tion P̂  = CTP̂  + PP̂  = 1 placed between the density 
displacements and the hardness operator of the Hil-
bert space interpretation of ][][ )2()2( ρρ FEv ∆=∆ , 
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or to the hardness operator itself, 
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The former gives rise to the associated partitioning 
the density displacements, while the latter amounts 
to dividing the hardness operator into the four ma-
trix elements  
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and the associated division of the hardness kernel: 
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This operator partitioning resolves the differential of 
(66) into the (P, CT)-resolved contributions: 
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 A similar projection of the softness operator parti-
tions it into the four matrix components, 

p 
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 σ̂ ∑ ∑∑ ∑ σ=σ=
X Y YX,X YY X ˆP̂ˆP̂ , 

 
(X, Y) ∈ {P, CT}. (79) 

 
In the position representation this operator projec-
tion gives rise to the corresponding division of the 
softness kernel: 
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It also provides the associated partitioning of the 
differential of (69): 
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The (P,CT)-resolved kernels  
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jointly denoted as )},({)',( rrrr ′= YX,xx , x = (η, σ), 
can be directly expressed in terms of the eigenfunc-
tions b(r) of (4). For the diagonal P-components one 
finds: 
 

〉′〉〈〉〈〈=〉′〈=′ ∑ ∑ r|rr|rrr |x̂||P̂x̂P̂),(, jjiix
i jPPPP  

 

= ∑ ∑ ′
i j jjii bxb ,)()( *

, rr  (83) 

 
where *

, ( ) ( , ) ( )d d .i j i jx b x b′ ′ ′= ∫ ∫ r r r r r r  For the two 
off-diagonal terms one similarly obtains: 
 

 ,
ˆ ˆ( , ) (1 P )x̂P |CT P P Px ′ ′= 〈 − 〉r r r | r  

),(|P̂x̂ , rrr|r ′−〉′〈= PPP x  

∑ ′−〉′〉〈〈=
j PPxjj ),(||x̂ , rrr|r  

),,()()( ,* rrrr ′−′= ∑ PPj jj xbx  (84) 

where rrrrr ′′′∫= d)(),()( jj bxx , and 

 〉′−〈=′ r|rrr |)P̂(1x̂P̂),(, PPCTPx  

,P̂ x̂ | ( , )P P Px′ ′= 〈 〉 −r | r r r  

,| | x̂ | ( , )P Pi
i i x′ ′= 〈 〉〈 〉 −∑ r r r r  

*
,( ) ( ) ( , ),i i P Pi

b x x′ ′= −∑ r r r r  (85) 

 
with rrrrr d),()()( ** ′∫=′ xbx ii . Finally, the diagonal 
CT-kernel is obtained by subtracting the above three 
partial kernels from the total kernel: 
 
 ),(),(),( ,, rrrrrr ′−′=′ PCTCTCT xxx  

    ),(),( ,, rrrr ′−′− PPCTP xx  (86) 

 
This illustrative geometric partitioning of the softness 
and hardness kernels should facilitate a better assess-
ment of the relative roles played by the charge-
transfer and polarization effects in molecular processes, 
and an evaluation of the strength of their mutual 
coupling. It also provides a powerful tool for divid-
ing the associated changes in the electronic energy, 
which is vital for such a diagnosis and ultimately for 
an understanding of the physical and chemical im-
plications these components have in diverse density 
rearrangements in molecules. 

6. Conclusion 

We have developed the projection partitioning tech-
nique for separating the polarization and charge 
transfer components of the familiar indices of the 
reactivity theory within the conceptual DFT ap-
proach. This approach uses the projection operators 
acting in the vector (Hilbert) space spanned by the 
independent modes of density displacements. It gives 
rise to the geometric resolution of the overall density 
reconstructions in chemical processes, which should 
bring about a better understanding of the relative 
importance of the P and CT effects in the bond-
forming−bond-breaking processes in molecules and 
reactive systems. The illustrative (P, CT)-decomposition 
of the Fukui function as well as the hardness and 
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softness kernels has been carried out. A similar division 
can be carried out for other reactivity criteria. It allows 
one to view the relations between the electronic per-
turbations and nuclear responses of the EP perspec-
tive in terms of the separate P- and CT-effects, and 
generates measures of the coupling between these 
two components. 
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